
A RECONFIGURABLE GF(2𝑀) ELLIPTIC CURVE CRYPTOGRAPHIC COPROCESSOR

M. Morales-Sandoval1,∗, C. Feregrino-Uribe2,⋄, R. Cumplido2,∇ and I. Algredo-Badillo3,+

1Polytechnic University of Victoria

Cd. Victoria, Tam. Mexico. 87138
∗mmoraless@upv.edu.mx

2National Institute for Astrophysics, Optics and Electronics

Tonantzintla, Pue. Mexico. 72840
⋄cferegrino@inaoep.mx, ∇rcumplido@inaoep.mx

3University of Istmo

Tehuantepec, Oax. Mexico. 70760
+algredobadillo@gmail.com

ABSTRACT

Elliptic Curve Cryptography (ECC) is a kind of cryptog-

raphy that provides the security information services using

shorter keys than other known public-key crypto-algorithms

without decreasing the security level. This makes ECC a

good choice for implementing security services in constrained

devices, like the mobile ones. However, the diversity of

ECC implementation parameters recommended by interna-

tional standards has led to interoperability problems among

ECC implementations. This work presents the design and

implementation results of a novel FPGA coprocessor for

ECC than can be reconfigured at run time to support differ-

ent implementation parameters and hence, different security

levels. Regardless there are several related works in the lit-

erature, to our knowledge this is the first ECC coprocessor

that makes use of a partial reconfigurable methodology to

deal with interoperability problems in ECC. A suitable ap-

plication of the proposed reconfigurable coprocessor is the

security protocol IPSec, where the domain parameters for

ECC-based cryptographic schemes, like digital signature or

encryption, have to be negotiated and agreed upon by the

communication partners at run time.

1. INTRODUCTION

Elliptic curve cryptography (ECC) [1, 2] is a kind of public

key cryptography whose main advantage is that it requires

smaller key sizes compared to the keys used by traditional

public key cryptosystems like RSA with the same security.

Elliptic curve cryptography is founded on the mathematical

properties of elliptic curves [3]. An elliptic curve over a

field 𝐾 is formed by the point 𝑂 called point at infinity, and

the set of points 𝑃 = (𝑥, 𝑦) ∈ 𝐾 × 𝐾 satisfying a (non-

singular) Weierstrass equation 1.

𝐸(𝐾) : 𝑦2 + 𝑎1𝑥𝑦 + 𝑎3𝑦 = 𝑥3 + 𝑎2𝑥2 + 𝑎4𝑥+ 𝑎6 (1)

The set 𝐸(𝐾) together with the identity point 𝑂 form an

additive abelian group 𝑆 = (𝐸(𝐾) ∪ 𝑂,+) respect to the

point addition operation ‘+’. The security of elliptic curve

cryptography is based on the difficulty to solve the discrete

logarithm problem, which is defined on 𝑆 as: given two

points 𝑃 , 𝑄 ∈ 𝐸(𝐾), find the scalar 𝑑 such that 𝑄 = 𝑑𝑃 .

The operation 𝑑𝑃 is called scalar multiplication and it is

the most time consuming operation in elliptic curve cryp-

tographic schemes such as ECDSA (Elliptic Curve Digi-

tal Signature Algorithm) or ECDH (Elliptic Curve Diffie-

Hellman) [4].

ECC-based cryptographic schemes need to define a tu-

ple 𝑇 = (𝐾,𝑅,𝐸,𝐺, 𝑛, ℎ), where 𝐾 is a finite field, 𝑅 is

a basis for the elements of 𝐾, 𝐸 is the elliptic curve de-

fined over 𝐾, 𝐺 is a generator point of the additive abelian

group 𝑆, 𝑛 is the order of 𝐺, that is, the smaller integer 𝑛

such that 𝑛𝐺 = 𝑂, and ℎ is the co-factor, the total num-

ber of points in the curve divided by 𝑛. Different fields 𝐾

can be used and also different curves 𝐸 on a fixed field. Sev-

eral tuples 𝑇 have been recommended for standards, like the

National Institute of Standards and Technology NIST [5] or

the Standards for Efficient Cryptography Group SECG [4].

The diversity of choices to implement ECC and the several

tuples 𝑇 recommended by international standards has led to

interoperability problems.

In this context, interoperability is understood as the abil-

ity of two ECC implementations (either in software or hard-

ware) to work together and communicate, for example one

ciphering and the other deciphering. To achieve this interop-

erability, it is necessary that all participants in the commu-

nication have the standardized versions of common ECC-

978-1-4244-8848-3/11/$26.00 ©2011 IEEE

209

based crypto-algorithms using the same parameters 𝑇 . How-

ever, most of the ECC hardware implementations of elliptic

curve cryptography are focused on implementing efficiently

the scalar multiplication operation 𝑑𝑃 [6, 7, 8, 9, 10, 11].

This efficiency is usually achieved by optimizing the cir-

cuits for specific tuples 𝑇 which increases even more in-

teroperability problems. Different to those approaches, this

work aims to provide a flexible solution that can dynami-

cally switch to different implementation parameters, instead

of custom high performance solutions for a specific tuple 𝑇 .

This article discusses a configurable system on progra-

mmable chip (CSoPC) that allows switching to different im-

plementation parameters 𝑇 of ECC at run time. The key

piece in this CSoPC is a coprocessor that accelerates the el-

liptic curve computations and can be configured at run time

to support different tuples 𝑇 . The CSoPC was prototyped to

the ML403 board, which includes a Virtex4 FPGA. Differ-

ent tuples 𝑇 recommended by NIST and SECG were used

for validation. Although other works have used FPGAs to

implement processors or coprocessors for ECC computa-

tions, this is the first work that reports a system where recon-

figuration of the FPGA is performed at run time to support

specific implementation parameters 𝑇 of ECC. A suitable

application of the proposed system is the security protocol

IPSec, where the domain parameters for ECC-based crypto-

graphic schemes, like digital signatures, have to be negoti-

ated and agreed upon by the communication partners at run

time.

The rest of this paper is organized as follows. Next

section describes the coprocessor architecture and gives de-

tails about the practical implementation. The results are dis-

cussed in section 3 and finally, concluding remarks and fur-

ther directions are presented in section 4.

2. ECC COPROCESSOR ARCHITECTURE FOR

SCALAR MULTIPLICATION 𝐷𝑃

An scalar multiplication 𝑑𝑃 is the result of adding the point

𝑃 ∈ 𝐸(𝐾) to itself 𝑑− 1 times. That is:

𝑑𝑃 = 𝑃 + 𝑃 + 𝑃 + ⋅ ⋅ ⋅+ 𝑃
� �� �

𝑑−1 𝑠𝑢𝑚𝑠

The scalar 𝑑 must be in the range [1, 𝑛− 1]. The ’+’ opera-

tion for elliptic curve point addition is defined for two oper-

ations: addition ECC-Add to sum two distinct points 𝑃 , 𝑄 ∈

𝐸(𝐾) and doubling ECC-Dbl to sum a point 𝑃 ∈ 𝐸(𝐾) to

itself. A software or hardware implementation of the scalar

multiplication implies the choice of the algorithms to per-

form finite field arithmetic, to select the coordinate system,

to represent the elliptic curve points and to select the algo-

rithm to compute 𝑑𝑃 . Most of the works reported in the

literature argue that the Montgomery ladder [12] is the best

choice for computing 𝑑𝑃 while projective coordinates [13]

are the best way to represent the elliptic curve points. This

argument is based on the fact that finite field inversion is

a very time consuming operation, requiring for its computa-

tion the same time required to compute six or more multipli-

cations. However, for small area implementations, affine co-

ordinates are better preferred because they require less oper-

ations and also less intermediate registers during the compu-

tations. For compact implementations, bit-serial field mul-

tipliers are preferred instead of digit-serial field multipliers.

Field inversion or direct division with average cost of 2𝑚−1
clock cycles results in a similar cost of two serial multipli-

cations. So in these cases the argument for using projective

coordinates does not apply.

The operation 𝑑𝑃 is implemented using the coprocessor

approach, avoiding the Fetch-Decode-Execute-Store cycle

in the processor approach. The coprocessor approach re-

quires less clock cycles because data are used immediately

after they are available from previous modules, reducing the

number of registers for storage but increasing the number

of buses in the system. The coprocessor presented in this

article is based on scalable 𝐺𝐹 (2𝑚) arithmetic modules to-

gether with combinatorial logic, and finite state machines

for control.

Hardware implementations of ECC should not only be

efficient but also resistant to side channel attacks [14]. In

these attacks extra source information such as timing, power

consumption, electromagnetic emanations or even sound can

be exploited to break the system. The binary method for

computing 𝑑𝑃 parses every bit value of scalar 𝑑 and executes

at each iteration one ECC-Dbl operation followed by one

ECC-Add only if the current bit value of 𝑑 is ‘1’. The direct

hardware implementation of this 𝑑𝑃 method is vulnerable

to side channel attacks, such as the simple power analysis

attack (SPA). In SPA, the attacker measures the power pro-

duced by the hardware executing the operation 𝑑𝑃 and tries

to reveal the private key from those traces. An SPA attack

for the hardware implementation of the binary method for

𝑑𝑃 is possible because ECC-Add and ECC-Dbl are different

in essence and they will produce different power traces. Due

the operations ECC-Add and ECC-Dbl are strongly related

to the 𝑑’s bits, the security of the system could be compro-

mised.

One approach for preventing SPA attacks is to rewrite

the addition formulas ECC-Add and ECC-Dbl so that a sin-

gle formula can be used for both kinds of point sums, indis-

tinctly [15]. This approach has been considered in the liter-

ature but using projective coordinates [6] or special forms

of the elliptic curve [16]. However, addition and doubling

operations are very similar in affine representation for ellip-

tic curves defined over binary fields GF(2𝑚) so these two

operations could also be unified. In [17] is presented a new

formulation that unifies both ECC-Add and ECC-Dbl op-

erations using affine coordinates. This new formulation al-

210

32

Data In

m

GF(2m) Squarer

m

xy

Control

Unit

(Binary

method) GF(2m) Multiplier

x
P

m m

x
Q

y
P

y
Q

mm

32

Data Out

4Control

clk

GF(2m) ECC CO-PROCESSOR

GF(2m) Divider

FSM

POINT ADDITION

FSM

s
0

C
o

m
b

in
a

to
ria

l lo
g

ic

Fig. 1. Elliptic curve coprocessor for 𝑑𝑃 .

lows to reduce the hardware used for implementing the addi-

tion operation in elliptic curves and increases the resistance

of the 𝑑𝑃 hardware implementation to side channel attacks

by expressing two different operations as a single one. The

ECC coprocessor presented in this work uses the single for-

mulation of [17] as main block for field and elliptic curve

arithmetic and its design incorporates the partial reconfig-

urable flow of Xilinx [18] to achieve a flexible hardware

able to adapt dynamically its architecture to support differ-

ent implementation parameters 𝑇 of ECC.

The 𝑑𝑃 architecture presented in this work is based on

finite state machines for reading the input parameters from a

host computer, implementing the left to right version of the

binary method [19] for scalar multiplication in elliptic curve

cryptography, and finally, delivering the result back to the

host computer when 𝑑𝑃 is obtained. The input parameters

𝑑 and 𝑃 are read as 32-bit words using a simple handshake

protocol. In the same way, the result 𝑑𝑃 is delivered to the

host computer as several 32-bit words. The block diagram

of the 𝑑𝑃 processor is shown in figure 1.

3. RESULTS

The 𝑑𝑃 coprocessor was implemented in a Virtex4 FPGA

using different tuples 𝑇 . In order to study the impact, in

terms of performance and space, of every module in the

overall 𝑑𝑃 coprocessor, each module was synthesized sepa-

rately..

Being GF(2𝑚) arithmetic the critical part in the 𝑑𝑃 co-

processor, different GF(2𝑚) arithmetic modules were de-

signed and tested leading to different versions for the ECC

coprocessor. The HDL design was described in such a way

that the synthesis tools had a better translation from the high

level description to the hardware resources in the FPGA. All

the different versions of the arithmetic units were synthe-

sized and optimized for speed or area so different results

were achieved. The GF(2𝑚) divider was by far the criti-

cal module in the hardware architecture of 𝑑𝑃 coprocessor,

occupying about one third of the area for the entire 𝑑𝑃 co-

processor. The results of the implementation of the 𝑑𝑃 co-

processor in the FPGA are shown in table 1.

The area optimization criteria allows to design more area

reduced architectures at the cost of lower frequencies, which

implies slower circuits for performing 𝑑𝑃 . The Virtex4 FPGA

enables to implement the security levels of 𝑚=113, 131,

163, 233, 277 and 283 (this last only if area optimization

is used). All the designs for these security levels were tested

and validated by comparing the hardware results against soft-

ware results.

3.1. The configurable system on programmable chip for

interoperable Elliptic Curve Cryptography

The CSoPC for interoperable ECC is based on a partially

reconfigurable design. Figure 2 shows the target system,

which includes an embedded microprocessor, data buses,

memory blocks, an universal asynchronous UART module

and the 𝑑𝑃 coprocessor wrapped by the IPIF EDK core.

The 𝑑𝑃 coprocessor could be partially configured for arbi-

trary tuples 𝑇 . A C program running in the microproces-

sor enables the ECC coprocessor and sends the point 𝑃 and

scalar 𝑑 through the PLB bus as a group of 32-bit words. Af-

ter reading the input parameters, the ECC coprocessor starts

the computation while the processor waits for the results.

By asserting a signal, the coprocessor notifies the end of the

computation and then the microprocessor reads back the re-

sults and shows them via the UART module to the user. The

CSoPC was implemented using the ISE design flow for par-

tial reconfiguration [18] EDK and PlanAhead from Xilinx.

The system in figure 2 was divided in a static part and a

reconfigurable part. The static part is that part of the system

implemented in the FPGA that will never change. It was

composed of all the modules in figure 2 except the ECC co-

processor wrapped by the IPIF module, which is the recon-

figurable part. All signals that connect the fixed and recon-

figurable part cross through busmacros. Also, global FPGA

resources like the buffered clock were locked and specified.

The assignment of area for each part in the design, fixed

and reconfigurable, the busmacro placement and global re-

sources were specified in a constraint file using PlanAhead.

The ECC coprocessor uses three parameters from a given

tuple 𝑇 : the size 𝑚 of the finite field GF(2𝑚), the irreducible

polynomial 𝑓(𝑥) defining GF(2𝑚) and its arithmetic, and the

elliptic curve 𝐸. All these parameters are available from the

standards, like the ones proposed by NIST. The size 𝑚 af-

fects the size of the data buses in the coprocessor, the num-

ber of iterations in the finite field arithmetic modules and

211

Table 1. Synthesis results for the 𝑑𝑃 coprocessor optimized by speed or area.
Security level 113 131 163 233 277 283

Optimization Speed Area Speed Area Speed Area Speed Area Speed Area Speed Area

Slices 2566 2109 3217 2467 3883 3034 4834 4236 5632 5086 5743 5191

Freq. (MHz) 136 93 139 90 145 87 134 78 114 84 114 84

PowerPC

Microprocessor

PLB Bus

OPB Bus

Memory

PLB-OPB

Bridge

UART
ECC

Co-

Processor

IPIF

BusMacros

Fig. 2. Block diagram of the configurable system for ECC.

in the method for performing scalar multiplication. The ir-

reducible polynomial 𝑓(𝑥) is used in finite field arithmetic

and the elliptic curve is used in the point addition opera-

tion. Hence, for each tuple 𝑇 for ECC there are specialized

modules for field arithmetic, point addition and scalar mul-

tiplication using the parameters (𝑚, 𝑓(𝑥), 𝐸). Several ver-

sions of the reconfigurable modules were implemented, not

only because of the different tuples 𝑇 but also because of

the different hardware architectures designed for finite field

arithmetic.

The CSoPC for interoperable ECC was prototyped us-

ing the ML403 board from Xilinx for validation and proof

of concept purposes. The FPGA device is a Virtex4 which

has 5,472 slices available and includes a PowerPC processor.

The system was validated using test vectors generated by

software models for different recommended security levels

in [4] and [5]. The implementation results of the CSoPC are

shown in table 2. In this implementation phase, the 𝑑𝑃 co-

processor was implemented using the area optimization cri-

teria and the constraint for working with a clock of 100MHz,

which is the working frequency of the ML403 board.

The time to perform the scalar multiplication is given

in table 3. The coprocessor uses the clock frequency of the

bus system, which is the same that the microprocessor clock,

100 MHz. All results were validated by applying test vectors

and comparing the results from the coprocessor against the

results obtained from a software implementation.

The aim of this work was to explore the design of an

ECC coprocessor in FPGA that exhibits better performance

Table 2. Area results for the reconfigurable system.

Hw Resources

Reconfigurable part

Fixed Security level (bits)

part 113 131

Flip-Flops 942 1,966 2,233

LUTs 891 4,535 4,053

Slices 1027 2,748 2,336

Dual Port RAMs 216 0 0

Shift registers 64 0 0

RAMB16s 16 0 0

Gate count 1,079,972 44,411 43,751

Table 3. Timing results for the reconfigurable 𝑑𝑃 coproces-

sor.

Sec. level Cycles/𝑑𝑃 Time (ms)

113 51,730 0.52 ms

131 68,887 0.69 ms

163 107,043 1.07 ms

233 211,210
2.11

(Estimated)

277 305,922
3.05

(Estimated)

283 318,348
3.18

(Estimated)

than software solutions and at the same time, retains the

flexibility of software to support different implementation

parameters at run time. Then, the main contribution of this

work lies in the ability of the system to be configured at run

time depending on the security level required by an ECC-

based cryptographic algorithm executed in the general pur-

pose microprocessor.

As no other interoperable ECC hardware implementa-

tion has been reported in the literature, although it is not

so fair, we have compared this work against not interopera-

ble and higher performer ECC architectures. We provide a

comparison table of the results achieved by this architecture

against results reported in the literature, whose main pur-

pose has been to achieve the highest performance without

considering the ECC interoperability problems. In several

cases, the reported works deal with custom implementations

optimized for single implementation parameters 𝑇 . In or-

der to provide a fair comparison, the results achieved in this

212

work are compared against those works in the literature us-

ing the same conditions, that is, against related works using

the same method for 𝑑𝑃 , the same elliptic curve represen-

tation and the same finite field. Also, the ECC coprocessor

was implemented using the same FPGA than related works.

The comparison results are shown in table 4.

Table 4. Comparison results against works under the same

conditions

Ref. 𝑚 Time (ms) Device Slices

[20]

151 5.1

XCV2000E 4048
176 6.9

191 8.2

239 12.8

[21]

113 3.7

XCV300-4

1290

155 6.8 1567

281 14.4 2622

This work

113 0.84
XCV2000E

2449

131 1.25 2582

163 2.09 3324

113 1.05
XCV300-4

2515

131 1.58 2516

113 0.52

Virtex4

2405

131 0.69 2871

163 1.07 3528

Besides custom hardware implementations, some param-

eterizable hardware architectures have been reported in the

literature that have used different arithmetic algorithms in

order to achieve a faster 𝑑𝑃 operation. In this work it was

found that reduced area designs are desired due the prob-

lems experienced when the reconfigurability of the copro-

cessor was implemented. The proposed coprocessor uses

fewer resources than Kerins et al. [20] and computes 𝑑𝑃

faster. Our coprocessor is also faster than the coprocessor

reported by Leong and Leung [21] at the expense of higher

area resources.

Table 5 shows the comparison results of the proposed

𝑑𝑃 coprocessor against other works that have used projec-

tive coordinates, like [7] (10.9 ms for 𝑚 = 113), [9] (3.8

ms for 𝑚 = 160) or [6] (2.47 ms for 𝑚 = 179). The use

of projective coordinates supposes a better performance be-

cause inversions are avoided at each point addition operation

at the cost of more multiplications. However, as it is shown

in table 5, the proposed 𝑑𝑃 coprocessor achieves better tim-

ing than these works.

Other works using projective coordinates perform 𝑑𝑃

faster than the coprocessor presented in this article but they

require higher area resources. For example, [10] uses 4,749

slices from a Virtex2 Pro and performs the 𝑑𝑃 in the field

𝐺𝐹 (2163) in 0.49 ms. In [8], the area required is 19,000

slices from a XCV2000E FPGA while the 𝑑𝑃 operation in

the field 𝐺𝐹 (2163) is computed in 0.14 ms. While the area

used in [8] is six times bigger that the area used by the pro-

posed coprocessor, and the one used in [6] is three times

bigger. In [22], the operation 𝑑𝑃 is performed in half the

time of in this work but the required area is almost three

times bigger.

Table 5. Comparison results against works using projective

coordinates.

Ref. 𝑚 Time (ms) Device Slices

[6] 179 2.47 XCV800 10,626

[23] 251 21.8 XC3S5000 19,304

[24] 163 0.66 V2Pro 8769

[7] 113 10.9 AT94K40 -

[8] 163 0.14 XCV2000E 19,000

[9] 160 3.81 XCV800 -

[10] 163 0.49 V2Pro 4,749

[25] 163 0.07 XCV2000E 5,008

[11] 191 0.05 VirtexE 3200 18, 314

[26] 192 2.21 FPSLIC 4907 CLBs

[22] 113 0.27 XC2V6000 6,961

This work

113 0.84
XCV2000E

2449

131 1.25 2582

163 2.09 3324

113 1.05
XCV300-4

2515

131 1.58 2516

113 0.52

Virtex4

2405

131 0.69 2871

163 1.07 3528

The results obtained by the coprocessor discussed in this

work are not only competitive or better that the reported in

the literature but also are the results of the first coprocessor

that provides the faculty of adapting at run time the hardware

to support the costly arithmetic in elliptic curve cryptogra-

phy.

4. CONCLUDING REMARKS AND DIRECTIONS

This paper presented a configurable system on reconfigurable

chip for scalar multiplication 𝑑𝑃 . It is well suited for pro-

tocols like IPSec where the parameters of the ECC crypto-

algorithms are negotiated at run time. Dynamic reconfigu-

ration of the ECC coprocessor allows supporting different

security levels while retaining high performance. An effi-

cient coprocessor for ECC using affine representation was

discussed. This coprocessor performs as well as those that

use projective representation while the architecture design is

simpler and modular, so the system can be updated with bet-

ter performer modules for finite field arithmetic, which still

determine the whole latency for the 𝑑𝑃 operation. The sin-

gle formula for ECC point addition helps to make the elliptic

curve point addition operations indistinguishable, which in-

creases the resistance of the 𝑑𝑃 hardware implementation

to SPA attacks. This first reported partially reconfigurable

solution is well suited to provide dynamic adaptation to dif-

ferent tuples 𝑇 and hence to provide interoperability in el-

liptic curve cryptography. Further work is needed to design

213

extremely light-weight (low area) ECC in hardware. Low-

power ECC is necessary mainly if the coprocessor is used

in constrained devices. Additionally, self reconfiguration of

the coprocessor could be pursued.

5. REFERENCES

[1] V. Miller, “Use of Elliptic Curves in Cryptography,” in Proc.

of Advances in Cryptology, CRYPTO’85, Santa Barbara, CA,

1985, pp. 417–426.

[2] N. Koblitz, “Elliptic Curve Cryptosystems,” Mathematics of

Computation, vol. 48, no. 177, pp. 203–209, November 1987.

[3] I. F. Blake, G. Seroussi, and N. P. Smart, Elliptic curves in

cryptography. New York, NY, USA: Cambridge University

Press, 1999.

[4] SEC 1, “Elliptic curve cryptography: Standards for efficient

cryptography group,” 2000, http://www.secg.org.

[5] NIST, “Recommended elliptic curves for federal government

use,” 1999, http://csrc.nist.gov/csrc/fedstandards.html.

[6] L. Batina, N. Mentens, B. Preneel, and I. Verbauwhede, “Bal-

anced point operations for side-channel protection of elliptic

curve cryptography,” in IEE Proceedings of Information Se-

curity, vol. 152, 2005, pp. 57–65.

[7] M. Ernst, M. Jung, F. Madlener, S. Huss, and R. Blumel, “A

Reconfigurable System on Chip Implementation for Elliptic

Curve Cryptography over GF(2𝑛),” in Proc. of CHES’2002,

ser. LNCS, vol. 2523. Redwood Shores, CA: Springer, 2002,

pp. 381–399.

[8] N. Gura, S. C. Shantz, H. Eberle, S. Gupta, and V. Gupta,

“An End to End Systems Approach to Elliptic Curve Cryp-

tography,” in Proc. of CHES 2002, ser. LNCS, vol. 2523.

Springer, 2002, pp. 349–365.

[9] N. Mentens, S. B. Ors, and B. Preneel, “An FPGA Imple-

mentation of an Elliptic Curve Processor GF(2𝑚),” in Pro-

ceedings of the 14th ACM Great Lakes symposium on VLSI,

Boston, MA, 2004, pp. 454–457.

[10] K. Sakiyama, L. Batina, B. Preneel, and I. Verbauwhede,

“Superscalar coprocessor for high-speed curve-based cryp-

tography,” in Proc. of CHES 2006, ser. LNCS, vol. 4249.

Springer-Verlag, 2006, pp. 415–429.

[11] N. Saquib, F. Rodriguez, and A. Diaz, “A Parallel Architec-

ture for Fast Computation of Elliptic Curve Scalar Multipli-

cation over GF(2𝑛),” in Proc. of RAW’04, Sta. Fe, USA, 2004,

pp. 26–27.

[12] J. López and R. Dahab, “Fast Multiplication on Elliptic

Curves over 𝐺𝐹 (2𝑚) without Precomputation,” in Proc. of

CHES’99, ser. LNCS, vol. 1717. Berlin: Springer, 1999,

pp. 316–327.

[13] ——, “Improved Algorithms for Elliptic Curve Arithmetic in

𝐺𝐹 (2𝑛),” in Proc. of Selected Areas in Cryptography, ser.

LNCS, vol. 1556. Springer, 1998, pp. 201–212.

[14] M. Joye, “Elliptic curves and side-channel analysis,” ST Jour-

nal of System Research, vol. 4, no. 1, pp. 17–21, 2003.

[15] B. Chevallier-Mames, M. Ciet, and M. Joye, “Low-cost so-

lutions for preventing simple side-channel analysis: Side-

channel atomicity,” IEEE Trans. Comput., vol. 53, no. 6, pp.

760–768, 2004.

[16] T. Izu and T. Takagi, “A fast parallel elliptic curve multipli-

cation resistant against side channel attacks,” in Proc. of the

5th International Workshop on Practice and Theory in Pub-

lic Key Cryptosystems. London, UK: Springer-Verlag, 2002,

pp. 280–296.

[17] M. Morales-Sandoval, C. Feregrino-Uribe, R. Cumplido,

and I. Algredo-Badillo, “A single formula and its imple-

mentation in FPGA for elliptic curve point addition us-

ing affine representation,” Journal of Circuits, Systems,

and Computers, vol. 19, no. 2, pp. 425–433, 2010, dOI:

10.1142/S0218126610006153.

[18] Xilinx Inc., “Two flows for partial reconfiguration: Mod-

ule based or difference based,” Application Note 290,

XAPP290., September, 9. 2004, www.xilinx.com.

[19] D. Hankerson, L. López, and A. Menezes, “Software Im-

plementation of Elliptic Curve Cryptography over Binary

Fields,” in Proc. of CHES’2000, ser. LNCS, vol. 1965.

Worcester, MA: Springer, August 2000, pp. 1–24.

[20] T. Kerins, E. Popovici, W. Marnane, and P. Fitzpatrick, “Fully

Parameterizable Elliptic Curve Cryptography Processor over

GF(2𝑚),” in Proc. of 12th FPL’2002 Conference, ser. LNCS,

vol. 2438. Montpellier, France: Springer, 2002, pp. 750–

759.

[21] P. Leong and K. Leung, “A Microcoded Elliptic Curve Pro-

cessor Using FPGA Technology,” IEEE Trans. VLSI Syst.,

vol. 10, no. 5, pp. 550–559, October 2002.

[22] R. Cheung, N. Telle, W. Luk, and P. Cheung, “Customiz-

able elliptic curve cryptosystems,” IEEE Trans. VLSI Syst.,

vol. 13, no. 9, pp. 1048–1059, Sept. 2005.

[23] N. Mentens, K. Sakiyama, L. Batina, B. Preneel, and I. Ver-

bauwhede, “A side-channel attack resistant programmable

pkc coprocessor for embedded applications,” in International

Conference on Systems, Architectures, Modeling and Simula-

tion (IC-SAMOS 2007), 2007, pp. 194–200.

[24] L. Batina, N. Mentens, B. Preneel, and I. Verbauwhede,

“Flexible hardware architectures for curve-based cryptogra-

phy,” in Proc. of ISCAS 2006, 2006.

[25] J. Lutz and A. Hasan, “High performance fpga based ellip-

tic curve cryptographic co-processor,” in ITCC’04: Interna-

tional Conference on Information Technology: Coding and

Computing, vol. 2. IEEE Society Press, 2004, pp. 486–492.

[26] S. Janssens, J. Thomas, W. Borremans, P. Gijsels, I. Ver-

bauwhede, F. Vercauteren, B. Preneel, and J. Vandewalle,

“Hardware/software co-design of an elliptic curve public-key

criptosystem,” in 2001 IEEE Workshop on Signal Processing

Systems, 2001, pp. 209 – 216.

214

